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Abstract—Distributed source seeking in a three-dimensional
(3-D) environment without explicit estimation of the gradient of
the field is challenging. Nevertheless, for a swarm of an arbitrary
number of agents, we develop a strategy to perform a source seek-
ing behavior by requiring agents to synchronize their direction of
motion using only local interactions while modulating their speed
based only on the field value measured by each agent. The agents
collectively move toward the source without estimating gradient
and without sharing measurements of the field. We formulate a
cascaded input-to-state stability problem from which we obtain
Lyapunov-based convergence and robustness results. We validate
the convergence of the swarm to the minimum of the field through
simulated source seeking behavior in a 3-D scalar field.

Index Terms—Bioinspired swarm behavior, cascaded input-to-
state stability, consensus-on-a sphere, Distributed source seeking.

I. INTRODUCTION

Distributed source seeking is a collective behavior that has been
studied in natural swarms such as flocks of bird and schools of fish,
where the source value represents an environmental characteristic such
as chemical concentration, light intensity or temperature, just to name
a few [1]. Due to its distributed nature, this collective behavior has
inspired researchers to develop strategies and algorithms for swarms
of robots that are required to localize and identify a feature of interest.
The majority of these source seeking strategies require either exact
knowledge or explicit estimation of the gradient, which relies on the
exchange of field measurements as is the case of [2]–[5]. Recently, a
two-dimensional (2-D) bioinspired distributed source seeking strategy,
called the speeding up and slowing down (SUSD) strategy has been
developed in [6] where agents do not need to share their measurements,
but still move towards the source collectively.

In this paper, we extend the 2-D SUSD strategy to the 3-D setting
for an M -agent swarms. Motivated by certain biological swarming
behaviors [7], [8], we consider three agents of the swarm to locally
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compute a 3-D time-varying moving frame based only on relative
positions. On the other hand, the rest of the agents compute their body
frame using a nonlinear consensus-on-a sphere. Biologically the three
agents can be viewed as agents with older ages or more experience,
which from a robotic point of view can be thought as robots with
high sensing and computation capabilities. Each agent decomposes
its velocity into forward motion in one direction of the frame (SUSD
direction), and formation or connectivity-maintaining motion in the
plane formed by the remaining components of the frame (formation
plain). The forward motion speed (SUSD speed) depends only on the
current field value measured by each agent, hence each agent speeds
up or slows down as the field value changes.

The strategy results in a two-layer system: environmental and social
layers. In the environmental layer, the agents interact with the environ-
ment by modulating their speed as a function of the field value. In the
social layer, the agents interact with each other by means of implicit
and explicit consensus and formation control laws. The implicit con-
sensus law between the SUSD direction and the negative direction of
the gradient remarkably emerges from the local interaction rules that
the three agents apply to compute their body frame components. The
explicit consensus is used by the remaining agents to align with the
three agents. This results in a global synchronization behavior where
the synchronized value is indirectly controlled by the field value in
the environmental layer. This phenomenon can not be explained by
known consensus algorithms because the consensus emerges not due
to sharing the values or gradient of the field, but due to the SUSD
strategy.

A difficulty this paper has overcome is to pursue source seeking in
a 3-D space without assuming knowledge of the gradient as in [5],
and without explicit gradient estimation that relies on the exchange of
measurements as in [2]–[4]. The proposed SUSD strategy assumes that
each agent is able to measure the field value only at its current position
and does not require agents to exchange field measurements. Although
extremum-based swarm source seeking approaches do not require ex-
plicit knowledge of the field gradient, they are designed to indirectly
estimate the field gradient. Additionally, multiagent extremum seeking
approaches require an exchange of the field measurements [9], [10].
Except for the three agents that are required to maintain an equilateral
rigid body, the remaining agents are not required to form any specific
formations or graph structure, as in [2] where a circular formation is re-
quired. This implies that the strategy is scalable to swarms of arbitrary
numbers of agents and connected graphs.

Another challenge this paper has overcome is the convergence and
robustness analysis of the nonlinear consensus-on-a sphere control
laws. Although the general form of consensus-on-a-sphere is elegantly
analyzed in [11] and [12], our analysis is different in that it deals with
directed edges that complicate the analysis. Furthermore, since the
swarm is continuously moving, the consensus considered in this paper
is time varying with an input disturbance due to the change of the
field gradient as the swarm navigates. Through a choice of collective
states that represent the desired source seeking behavior, we are able to
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lump all the individual consensus states into an overall system of two
cascaded subsystems, and then justify the robustness of the consensus
law by formulating a cascaded input-to-state stability problem, using
techniques as in [13]. The choice of the collective states allows us to an-
alyze the cascaded input-to-state stability by only requiring connected
graphs without any restriction on the graph structure. This is different
than for example [14], where the analysis is initially conducted for
specific graphs and then generalized to arbitrary graphs inductively.

The main contributions of this paper are as follows.
1) Extending the SUSD in [6] from 2-D to 3-D for three-agents

formation.
2) Integrating a consensus-on-a sphere control law with the SUSD

for a swarm of an arbitrary number of agents.
3) Proving the convergence and robustness of the proposed strategy

through an input-to-state stability analysis.
The primary results of this paper are presented in [15] and [16].

Compared to [15], in this paper, we show that the dynamics of the
SUSD direction is in the form of a consensus-on-a sphere. Compared
to [16], where we used an ultimate boundedness convergence analysis,
in this paper we prove the robustness of the consensus using a cascaded
input-to-state stability framework.

The paper contributes to multiagent dynamics by providing a method
to analyze the collective motion of agents that need to synchronize their
direction of motion while modulating their speed. The selection of col-
lective states is a key step to enable convergence and robustness results.
Additionally, the resulted multilayer system can be a new framework
to describe and analyze the behavior of biological swarms.

II. PROBLEM FORMULATION

Consider a swarm of M agents in a 3-D space. Let ri ∈ R3 , i =
1, . . . , M be the position of the ith agent in the 3-D space. Let the in-
teraction among the agents be described by a graph G ⊆ V × E , where
V is the set of all agents and E is the set of all edges. Additionally, an
edge (i, j) ∈ E is undirected if also (j, i) ∈ E where i, j ∈ V . Conse-
quently, a graph is undirected if all edges in E are undirected. A graph
is connected if for all pairs of the agents in the graph, there exits a
path connecting the two agents. A graph is complete, if each agent
shares an edge with all other agents. The neighbor set of i is defined
by Ni = {j|(i, j) ∈ E}. Additionally, if for each agent Ni is fixed, the
graph is static, otherwise it is dynamic. In this paper, we assume the
following.

Assumption 2.1: G is static and connected.
Assumption 2.2: Each agent i, is able to measure the relative dis-

placement (rj − ri ) for all j ∈ Ni .
In practice, robots can be equipped with sensors to measure the

relative positions of their neighbors, which is less challenging than
requiring the global positions [17].

Suppose each agent is able to measure a positive field value
fi = f (ri ) ∈ R that represents an environmental characteristic such
as temperature or light intensity, with the following assumption.

Assumption 2.3: 1) The field f (ri ) is smooth, time invariant and
bounded, i.e., 0 ≤ fmin ≤ f (ri ) ≤ fmax.

2) The field has a unique minimum at the source location r0 , i.e.,
f (r0 ) = fmin.

Although not all of the real fields are smooth [18], this assumption
does not limit the applicability of the proposed strategy. For nonsmooth
fields, we can use stochastic models to transfer them into smooth fields.
Indeed, in our preliminary work in [15], we use a Poisson counting
process to transform a turbulent plume field into a smooth field.

Let the velocity of each agent be described by

ṙi = vi . (1)

Fig. 1. Geometry of a three-agent group in inertial frame.

Then, the problem we want to solve is to design a velocity controller
vi such that the swarm converges to the source distributively. The
problem is challenging since we want to solve it without explicitly
estimating the field gradient and without sharing field measurements.
This design might be used to model a biological swarm of a school of
fish seeking dark areas [19], which presumably do not explicitly share
field measurements. Additionally, this problem is important for swarm
robotics with limited resources such as underwater robotics, and in
environments where a field gradient is not possible to be estimated or
not well-defined such as a turbulent field.

III. VELOCITY CONTROL LAW DESIGN

In this section, we first design source seeking control laws for a
three-agent swarm. We then design control laws that enable a swarm
of arbitrary number of agents to get to the source distributively.

A. Swarm of Three Agents

Let the three agents form an equilateral formation, which means
that ||r1 − r2 || = ||r2 − r3 || = ||r3 − r1 ||. Define a right-handed
orthonormal frame (q,p,n), with an origin located at the center
rc = 1

3

∑3
i=1 ri , as

q =
r2 − r1

||r2 − r1 || , p =
r3 − rc

||r3 − rc || , n = q × p. (2)

Fig. 1 illustrates the geometry of the three-agent group with the defined
frame where N = ∇f (rc )

||∇f (rc ) || is a unit length vector pointing towards the
field gradient at the center of the formation.

Assumption 3.1: The three agents are numbered from 1 to 3 such
that each agent knows the numbers of the other agents.

Without explicit communication, this assumption can be satisfied by
assigning each agent with a specific mark or a blinking LED that can
be identified by each robot. Given the defined frame, let the velocity
vi in (1) be decomposed as

vi = vi ,n + vi ,q + vi ,p = vi,nn + vi,qq + vi,pp (3)

where vi,n , vi,q , and vi,p represent the decoupled forward speed
and formation speeds along the n, q, and p directions, respectively.
Through this decomposition, we decouple the normal component of
the velocity vi ,n from the tangential components vi ,q and vi ,p , which
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Fig. 2. Projections of ri onto q (a) and p (b).

allows us to analyze the stability of the normal and tangential modes
separately.

The objective for vi,q and vi,p is to maintain a rigid formation of
an equilateral triangle in the plane H, which is formed by the vectors
q and p. Let rq

i be the projection of ri onto vector q, and rp
i be

the projection of ri onto vector p, as illustrated in Fig. 2(a) and (b),
respectively. For agent i, we define sets N q

i and N p
i that contain the

indices of the neighboring agents along directions q and p, respectively.
For example, for the three-agent group as shown in Fig. 2, N q

1 = {3},
N q

2 = {3}, N q
3 = {1, 2}, N p

1 = {2, 3}, N p
2 = {1, 3}, N p

3 = {1, 2}.
The goal is to design vi,q and vi,p so that the relative distance from rq

i

to rq
j , i �= j, converges to a constant a0

ij , and the relative distance from
rp

i to rp
j , i �= j, converges to a constant b0

ij . Therefore, we design

vi,q = k3

∑

j∈N q
i

[〈rj − ri ,q〉 − a0
j,i ] (4)

vi,p = k4

∑

j∈N p
i

[〈rj − ri ,p〉 − b0
j,i ] (5)

where k3 , k4 > 0 are formation gain constants, a0
i ,j = −a0

j,i and b0
i ,j =

−b0
j,i are desired formation distances selected such that the three agents

form an equilateral triangle.
Inspired by behaviors of fish schools [19], we design the forward

speed vi,n in the direction n to be proportional to the field value f (ri )
as following:

vi,n = k1f (ri ) + k2 , i = 1, . . . , M (6)

where k1 , k2 ∈ R are positive gain constants. Note that vi,n depends
only on the locally measured field value, f (ri ). Thus, the forward
motion speed increases or decreases based on the field measurement,
f (ri ), and hence it is called SUSD speed. From now and after, we call
vi,n the SUSD speed, and n the SUSD direction.

B. Swarm of More Than Three Agents

To enable a swarm of more than three agents to reach the source dis-
tributively, it is challenging to define the frame components (q,p,n)
based only on relative positions as in (2). Inspired by biological swarms
where some agents are assumed to be more capable or more experi-
enced [7], [20], we require three agents to define their SUSD direction
(forward direction) as in (2), while the rest determine their SUSD
direction using the following consensus law:

ṅi = kf

∑

j∈Ni

[nj − 〈ni ,nj 〉ni ], i = 4, . . . , M (7)

where kf ∈ R is a positive constant representing the consensus gain.
This is a time-varying nonlinear consensus-on-a sphere, which pre-
serves a unit length of its vectors ni .

Define Gl = (V l , E l l ) to be the complete undirected graph de-
scribing the interactions among agents i = 1, 2, 3. Similarly, define
Gf = (Vf , Ef f ) , to be the undirected graph describing interactions

Fig. 3. Environmental and social interactions.

among agents i = 4, . . . , M . Additionally, define Ef l to be the set of
all edges that have i ∈ Vf as a tail and j ∈ V l as a head. According
to Assumption 2.1, we need Gf to be connected, and additionally we
need to ensure that for t ≥ 0 there exists at least one i ∈ Vf such that
(i, j) ∈ Ef l . These connectivity requirements are satisfied through for-
mation control laws (9) and (10). Note that we require the undirected
Gf to be only connected, but with any graph structure. For (7), we
further assume the following.

Assumption 3.2: Each agent i ∈ Vf is able to obtain the SUSD
directions nj , ∀j ∈ Ni .

Relying on advanced vision techniques, agents can measure the
headings of their neighbors [21]. With some treatment, agents can then
satisfy Assumption 3.2 by obtaining nj of their neighbors from their
heading measurements.

Then, the velocity of each agent is decoupled as

vi = vi,nni + vi ,H, i = 1, . . . , M (8)

where the SUSD direction ni and the SUSD speeds are as defined by
(7) and (6), respectively. The formation term vi ,H is defined to be

vi ,H = vi,qq + vi,pp, i = 1, . . . , 3 (9)

vi ,H =
∑

j∈Ni

wij

(
I − ninT

i

)
(rj − ri ), i = 4, . . . , M (10)

where q and p are as defined in (2), and wij = ||rj − ri ||2 − 〈rj −
ri ,ni 〉2 − d2

ij for an arbitrary desired interagent distances dij . Note
that the formation term (10) acts only on the plane perpendicular to ni

so that the SUSD speed along the SUSD direction ni is only affected by
the field value. Additionally, (10) is required to only ensure connectivity
maintenance without any specific rigid formations as in (9).

The resulted strategy may be viewed as a two-layer system com-
posed of environmental and social interactions as shown in Fig. 3. In
the environmental layer, all the agents modulate their SUSD speeds
according to the environmental field value as indicated by (6). In the
social layer, agents interact with each other to determine their SUSD
directions as indicated by (2) and (7), and to maintain formations as
indicated by (9) and (10).

Remark 1: Although three agents are enough to seek the source,
the proposed strategy presents a new method that enables a swarm of
more than three agents to navigate to the source with local information.
This is particularly important in modeling large biological swarms. We
discover in Section IV that using the three-agent local interactions (2),
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(6), (4), and (5) leads to a nonlinear consensus-on-a sphere (25) between
the SUSD direction and the negative direction of the field gradient. This
emergent consensus along with the explicit consensus law (7) of the
rest of the agents in the social layer lead to a synchronization behavior
where the synchronized value is indirectly controlled by the field value
in the environmental layer of Fig. 3. This behavior is not achieved
by the classical distance-based leader-follower approaches, where the
headings of the followers are always pointing toward the leaders, not
the field gradient. Hence, the proposed two-layer model might be more
reasonable to describe the at least some synchronization behaviors of
biological swarms.

IV. CONVERGENCE ANALYSIS

In [15], given Assumptions 2.1, 2.2, and 2.3, the formation control
laws (9) is proved to be exponentially stable. When the consensus law
(7) converges, then all agents will have the same normal plane H, and
hence the formation control law (10) becomes a known formation prob-
lem that can be proved using methods in [15], or others in the related
literature. However, during the transient time, each agent will have its
own planeHi , and hence proving the convergence of (10) requires more
treatment which is beyond the scope of this paper. Remark that all the
following subsequent proofs do not require the convergence of (10).

A. Convergence of the SUSD Direction for M = 3

The goal of this section is to show that the SUSD direction n
in (2) converges to the negative direction of the gradient, N =
∇f (rc )

||∇f (rc ) || . In the inertial frame, once the formation converges, vi,q =
vi,p = 0. Then, the velocity of the ith agent in the rigid body be-
comes vi = vi,nn, and the velocity of the formation center is vc =
1
3

∑3
i=1 vi,nn = vc,nn, which indicates that the moving direction of

the rigid body coincides with the n axis of the body frame. Define shape
variables 〈N,n〉, 〈N,q〉, and 〈N,p〉 [22], [23]. The shape variables
satisfy

〈N,p〉2 = 1 − 〈N,q〉2 − 〈N,n〉2 . (11)

Since we have d 〈N ,n 〉
dt

= 〈N, ṅ〉 + 〈Ṅ,n〉, the first step is to derive ṅ.
In the frame (q,p,n), we can write any vector v as

v = 〈q,v〉q + 〈p,v〉p + 〈n,v〉n. (12)

To find ṅ, we apply (12) with v = ṅ, and calculate the coefficients
〈q, ṅ〉, 〈p, ṅ〉, and 〈n, ṅ〉. In the inertial frame, define the rotation
matrix of the rigid body as g = [q,p,n] ∈ SO(3). Define a skew
symmetric matrix S(ω), in which ω ∈ R3 is the angular velocity of
the rigid body. Then, we have ġ = S(ω)g, and from which we derive
ṅ = ω × n. Since the speed of ri along directions q and p are zero for
the rigid body, we conclude that ω is confined in the plane H. For the
velocity of the agent in the inertial frame, vi − vc satisfies

vi − vc = ω × (ri − rc ). (13)

Then, we have

(vi,n − vc,n )n = ω × (ri − rc ). (14)

Applying inner product with n on both sides of (14)

vi,n − vc,n = 〈ω × (ri − rc ),n〉. (15)

Define ωi = 〈ω × (ri − rc ),n〉. We then have

ωi = −〈ri − rc , ω × n〉 = −〈ri − rc , ṅ〉. (16)

Using (2) and (16), we derive

ω3 = −‖ r3 − rc ‖ 〈p, ṅ〉 (17)

ω2 − ω1 = −‖ r2 − r1 ‖ 〈q, ṅ〉 (18)

which produces: 〈p, ṅ〉 = − ω 3
‖r3 −rc ‖ and 〈q, ṅ〉 = − ω 2 −ω 1

‖r2 −r1 ‖ . Since n
is a unit vector, we have 〈n, ṅ〉 = 0. Therefore,

ṅ = − ω2 − ω1

‖ r2 − r1 ‖q − ω3

‖ r3 − rc ‖p. (19)

From (15), we have ωi = vi,n − vc,n . Since the field f (r) is at least
class C1 , then, from the Taylor expansion, we have

vi,n = k1 (f (rc ) + 〈∇f (rc ), ri − rc 〉) + k2 + H.O.T (20)

where H.O.T represents higher order terms. In addition,

vc,n =
1
3

3∑

i=1

vi,n =
k1

3

3∑

i=1

f (ri ) + k2

= k1f (rc ) +

〈
k1

3
∇f (rc ),

3∑

i=1

ri − 3rc

〉

+ k2 = k1f (rc ) + k2 .

Therefore, if the agents are close enough to each other such that the
higher order terms are insignificant, we derive

ωi = vi,n − vc,n = k1 ‖ ∇f (rc ) ‖ 〈N, ri − rc 〉 (21)

which leads to

ω2 − ω1 = k1 ‖ ∇f (rc ) ‖‖ r2 − r1 ‖ (N · q) (22)

ω3 = k1 ‖ ∇f (rc ) ‖‖ r3 − rc ‖ (N · p). (23)

Substituting (22) and (23) into (19), we obtain

ṅ = −k1 ‖ ∇f (rc ) ‖ (〈N,q〉q + 〈N,p〉p). (24)

Lemma 4.1: The dynamics (24) represents a consensus-on-a sphere
control law between the SUSD direction and negative direction of the
gradient. In particular, we can rewrite (24) as

ṅ = −kl ||∇f (rc )||(I − nnT )N. (25)

Proof: From (11) we can write

NT (qqT + ppT )N = NT N − NT nnT N = NT (I − nnT )N.

From which, we obtain

(qqT + ppT )N = (I − nnT )N. (26)

Finally, plug (26) into (24) to get (25). �
Note that the consensus (25) is a time-varying since ∇f (rc ) is

changing as the center rc moves around. We want to show that the
consensus law asymptotically converges to the agreement n = −N
as t → ∞. Let θ = 〈N,n〉 + 1 and δ = 〈n, Ṅ〉. Then using (25), we
derive

θ̇ =
d〈N,n〉

dt
= 〈N, ṅ〉 + 〈n, Ṅ〉

= −kl ‖ ∇f (rc ) ‖ (1 − 〈N,n〉2 ) + 〈n, Ṅ〉
= −kl ||∇f (rc )||θ(2 − θ) + δ � h(t, θ, δ). (27)

The unforced system h(t, θ, 0), has two equilibriums: θ = 0 and θ = 2,
where θ = 0 corresponds to the desired equilibrium 〈N,n〉 = −1, and
θ = 2 corresponds to the undesired equilibrium 〈N,n〉 = 1. Since
we do not know Ṅ, we view δ as an input disturbance and analyze
the system convergence using an input-to-state stability framework.
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Note that since N is perpendicular to Ṅ, then δ = 0 when θ = 0, 2.
Theorem 4.1 summarizes the stability results of (27).

Theorem 4.1: Consider (27). Assume that ||∇f (rc )|| is bounded
below along the trajectory of the formation center, i.e., ||∇f (rc )|| ≥ εc

for a small constant εc > 0 everywhere except at the source location
where f (rc ) = 0. If initially θ(0) �= 2, then the equilibrium θ = 0
of the unforced system, h(t, θ, 0) is asymptotically stable. Moreover,
whenever θ(0) �= 2 and assuming |δ| < 2kεεc for a small ε < 1, system
(27) is input-to-state stable.

Proof: Let D = {θ ∈ R|0 ≤ θ < 2}. Let V (θ) : D → R be a
Lyapunov candidate function defined as follows:

V (θ) =
θ

2 − θ
. (28)

Note that V ≥ 0 and V = 0 if and only if θ = 0. Furthermore, V → ∞
as θ → 2. Then,

V̇ =
∂V

∂θ
θ̇ =

2
(2 − θ)2 θ̇. (29)

For the unforced system h(t, θ, 0), we have

V̇ =
−2k||∇f (rc )||θ(2 − θ)

(2 − θ)2 = −2k||∇f (rc )||V ≤ 0. (30)

Since V ≥ 0 and V = 0 if and only if θ = 0, then the equilibrium θ = 0
of the unforced system is asymptotically stable. Moreover, since V̇ is
negative definite and V → ∞ whenever θ → 2, then D = {θ ∈ R|0 ≤
θ < 2} is a positively invariant set which implies that trajectories start
inside D will stay there forever. For the forced system h(t, θ, δ)

V̇ =
−2k||∇f (rc )||θ(2 − θ)

(2 − θ)2 +
2δ

(2 − θ)2

≤ −2k||∇f (rc )||(1 − ε)V, ∀ |θ| >
|δ|

2kεεc

. (31)

Let α1 (|θ|) = α2 (|θ|) = |θ |
2−|θ | , which are class K∞ functions on

D and satisfy: α1 (|θ|) ≤ V (θ) ≤ α2 (|θ|). Additionally, α3 (θ) =
2k||∇f (rc )||(1 − ε) θ

2−θ
and ρ(|δ|) = |δ |

2k εεc
are class K functions.

Therefore, according to [24, Th. 4.19], the system (27) is input-to-
state stable with gain γ = α−1

1 ◦ α2 ◦ ρ = |δ |
2k εεc

. Additionally, since
δ is vanishing at the equilibrium, then the system is asymptotically
stable. �

B. Convergence of the SUSD Directions for M > 3

The goal of this section is to show that the consensus law (7) con-
verges to the solution ni = nj = n ∀ i, j ∈ Vf .

Let ui =
∑

k∈Ni
nk . Then rewrite the consensus law (7) as

ṅi = kf

∑

k∈Ni

(
nk − nT

k nini

)
= kf

(
I − ninT

i

)
ui . (32)

The consensus (32) has the following three equilibrium sets:

(ni ,ui ) ∈
{(

− ui

||ui || ,ui

)

,

(
ui

||ui || ,ui

)

, (ni , 0)
}

. (33)

As proved in [12], the undesired equilibrium sets (ni ,ui ) =
(− u i

||u i || ,ui ) and (ni ,ui ) = (ni , 0) are unstable. The unique asymp-
totically stable equilibrium is the set (ni ,ui ) = ( u i

||u i || ,ui ), which is

equivalent to {ni = nj = nl for all i, j ∈ Vf } where by nl we denote
the SUSD direction of the three agents defined in (2).

Since three agents have their own SUSD dynamics given by (25),
then the analysis of (32) is different from the one analyzed in [12]. In
particular, in [12] all the edges are undirected whereas in this paper we

need to consider the directed edges (i, l) ∈ Ef l . Additionally, (25) is
time varying, which produces a time-varying nonlinear consensus-on-a
sphere problem compared to the time invariant form considered in [12].
To overcome these difficulties, we first construct collective states that
represent the desired equilibrium and then derive their dynamics. We
then formulate a cascaded input-to-state stability problem to analyze
the stability of (32). Consider the following collective states:

θf =
∑

(i ,j )∈Ef f

(1 − 〈ni ,nj 〉) (34)

θl =
∑

(i , l)∈Ef l

(1 − 〈ni ,nl 〉) (35)

θN = 1 + 〈nl ,N〉 (36)

where θf = 0 if and only if ni = nj ∀ (i, j) ∈ Ef f , θl = 0 if and
only if ni = nl ∀ (i, l) ∈ Ef l , and θN = 0 if and only if nl → N as
t → ∞. Hence, the convergence of these collective states, (θf , θl , θN )
to the origin, (0, 0, 0) represents the desired objective of ni → nl →
−N for all agents. The dynamics of the collective state θN is given by
(27). In the following, we derive the dynamics of the collective states
θf and θl . Taking time derivative of (34), and using (32)

θ̇f = −
∑

(i ,j )∈Ef f

[〈ni , ṅj 〉 + 〈nj , ṅi 〉]

= −kf

∑

(i ,j )∈Ef f

[〈ni , (I − nj nT
j )uj 〉 + 〈nj ,

(
I − ninT

i

)
ui 〉].

To continue, we first prove the following Lemma.
Lemma 4.2: For a connected and undirected graph G = (V, E),∑

(i ,j )∈E [〈ni , (I − nj nT
j )uj 〉 + 〈nj , (I − ninT

i )ui 〉] =
∑

i∈V
∑

j∈Ni

〈nj , (I − ninT
i )ui 〉.

Proof: Since (i, j) is an undirected edge, then:
∑

(i ,j )∈E
[〈ni , (I − nj nT

j )uj 〉 + 〈nj , (I − ninT
i )ui 〉] = 2

∑
(i ,j )∈E〈nj , (I −

ninT
i )ui 〉= 2( 1

2 )
∑

i∈V
∑

j∈Ni
〈nj , (I − ninT

i )ui 〉=
∑

i∈V
∑

j∈Ni

〈nj , (I − ninT
i )ui 〉. �

Note that, the Lemma requires (i, j) to be an undirected edge. The
fact that some directed edges appear under ui =

∑
k∈Ni

nk or uj =∑
k∈Nj

nk for some i, j does not violate the lemma, since they are still

captured under ui . Since Ef f is the set of all undirected edges, we use
Lemma 4.2 to get

θ̇f = −kf

∑

i∈Vf

∑

j∈Ni

〈
nj ,

(
I − ninT

i

)
ui

〉

= −kf

∑

i∈Vf

〈
∑

j∈Ni

nj ,
(
I − ninT

i

)
ui

〉

. (37)

Note that
∑

j∈Ni
nj �= ui =

∑
k∈Ni

nk since k ∈ {1, 2, 3, . . . , M},
while j ∈ {4, . . . , M}. For this, we write the following: ui = ainl +∑

j∈Ni
nj = ainl + ûi , where ai = 1, if one of the agents in the set

{1, 2, 3} is a neighbor to the ith agent, and ai = 0, otherwise. Then,
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we continue to obtain the following:

θ̇f = −kf

∑

i∈Vf

〈
ûi ,

(
I − ninT

i

)
(ainl + ûi )

〉

= kf

⎡

⎣
∑

i∈Vf

(
〈ûi ,ni 〉2 − ||ûi ||2

)
−

∑

i∈Vf

〈
ûi , ai

(
I − ninT

i

)
nl

〉
⎤

⎦

= kf

⎡

⎣
∑

i∈Vf

(
〈ûi ,ni 〉2 − ||ûi ||2

)
−

∑

(i , l)∈Ef l

〈
ûi ,

(
I − ninT

i

)
nl

〉
⎤

⎦ .

(38)

Similarly, taking time derivative of (35), and using (32) and (25)

θ̇l = −
∑

(i , l)∈Ef l

[〈nl , ṅi 〉 + 〈ni , ṅl 〉]

= −kf

∑

(i , l)∈Ef l

〈nl ,
(
I − ninT

i

)
ui 〉

+ kl ||∇f (rc )||
∑

(i , l)∈Ef l

〈ni ,
(
I − nlnT

l

)
N〉

= − kf

∑

(i , l)∈Ef l

〈nl ,
(
I − ninT

i

)
(ûi + nl )〉

+ kl ||∇f (rc )||
∑

(i , l)∈Ef l

〈ni ,
(
I − nlnT

l

)
N〉

= kf

∑

(i , l)∈Ef l

(〈ni ,nl 〉2 − 1) − kf

∑

(i ,L )∈Ef l

〈ûi ,
(
I − ninT

i

)
nl 〉

+ kl ||∇f (rc )||
∑

(i , l)∈Ef l

〈ni ,
(
I − nlnT

l

)
N〉. (39)

Let x1 = θf + θl and x2 = θN . We then view the system as a cascade
of two systems

ẋ1 = f1 (x1 , x2 )

ẋ2 = f2 (x2 , δ). (40)

Note that the f1 system represents the consensus among all SUSD
directions of the agents in the set {4, . . . , M} with x2 represents the
input disturbance due to the dynamics of the agents in the set {1, 2, 3}.
On the other hand, the f2 system represents the consensus of the SUSD
direction of the agents in the set {1, 2, 3} with the negative direction
of the gradient in which δ represents the input disturbance due to the
dynamics of the gradient. Using (38) and (39), we derive the dynamics
of x1

ẋ1 = θ̇f + θ̇l

= kf

∑

i∈Vf

(〈ûi ,ni 〉2 − ||ûi ||2
)

+ kf

∑

(i , l)∈Ef l

(〈ni ,nl 〉2 − 1)

− 2kf

∑

(i , l)∈Ef l

〈ûi ,
(
I − ninT

i

)
nl 〉

+ kl ||∇f (rc )||
∑

(i , l)∈Ef l

〈ni ,
(
I − nlnT

l

)
N〉. (41)

To further simplify, we utilize the following lemma.

Lemma 4.3:

− 2〈ûi ,
(
I − ninT

i

)
nl 〉 = [〈ni ,ui 〉2 − ||ui ||2 ]

+ [||ûi ||2 − 〈ûi ,ni 〉2 ] + [1 − 〈ni ,nl 〉2 ]. (42)

Proof:

− 2〈ûi ,
(
I − ninT

i

)
nl 〉 = 2〈ûi ,ni 〉〈ni ,nl 〉 − 2〈ûi ,nl 〉

= (〈ûi ,ni 〉 + 〈ni ,nl 〉)2 − 〈ûi ,ni 〉2 − 〈ni ,nl 〉2

− 〈ûi + nl , ûi + nl 〉 + ||ûi ||2 + 1 = 〈ni , ûi + nl 〉2

− ||ûi + nl ||2 + ||ûi ||2 − 〈ûi ,ni 〉2 + 1 − 〈ni ,nl 〉2 . (43)

Since ui = ûi + nl ∀ (i, l) ∈ Ef l , then the lemma follows directly
from the last step. �

Therefore, applying Lemma 4.3 in (41)

ẋ1 = kf

⎡

⎣
∑

i∈Vf

(〈ûi ,ni 〉2 − ||ûi ||2
)

+
∑

(i , l)∈Ef l

(||ûi ||2 − 〈ûi ,ni 〉2
)

+
∑

(i , l)∈Ef l

(〈ni ,ui 〉2 − ||ui ||2
)
⎤

⎦

+ kl ||∇f (rc )||
∑

(i , l)∈Ef l

〈ni ,
(
I − nlnT

l

)
N〉

= kf

⎡

⎣
∑

i∈Ṽf

(〈ûi ,ni 〉2 − ||ûi ||2
)

+
∑

(i , l)∈Ef l

(〈ni ,ui 〉2 − ||ui ||2
)
⎤

⎦

+ kl ||∇f (rc )||
∑

(i , l)∈Ef l

〈ni ,
(
I − nlnT

l

)
N〉 (44)

where Ṽf = Vf − {i|(i, l) ∈ Ef l}. The following theorem summa-
rizes the convergence results of the cascaded system (40).

Theorem 4.2: Consider (40) with f1 (x1 , x2 ) and f2 (x2 , δ) are
as defined in (44) and (27), respectively. Assume that ||∇f (rc )||
is bounded below along the trajectory of agents {1, 2, 3}, i.e.,
||∇f (rc )|| ≥ εc for a small constant εc > 0 everywhere except at the
source location where f (rc ) = 0. Then, the f1 system is input-to-state
stable with respect to the input disturbance x2 . Furthermore, the over-
all system (40) is input-to-state stable with respect to the field input
disturbance δ.

Proof: We already proved in Theorem 4.1 that the f2 system is
input-to-state stable w.r.t. δ. What remains is to prove that the f1

system is input-to-state stable w.r.t. x2 . Then, we use [13, Th. 3] to
conclude that the overall interconnected system is input-to-state stable.
For the unforced system, f1 (x1 , 0), x2 = θN = 0. This implies that
nl = −N, and hence 〈ni ,

(
I − nlnT

l

)
N〉 = 〈ni , (I − NNT )N〉 =

0. Therefore,

ẋ1 = f1 (x1 , 0)

= kf

⎡

⎣
∑

i∈Ṽf

(〈ûi ,ni 〉2 − ||ûi ||2
)

+
∑

(i , l)∈Ef l

(〈ni ,ui 〉2 − ||ui ||2 )
⎤

⎦ .

Let V (x1 ) = 1
2 x2

1 , be a Lyapunov candidate function. Note that V is
positive definite and V = 0 if and only if θf = θl = 0, which implies
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that ni = nl ∀ i ∈ Vf . Therefore,

V̇ = − kf x1

∑

i∈Ṽf

(||ûi ||2 − 〈ûi ,ni 〉2
)

− kf x1

∑

(i , l)∈Ef l

(||ui ||2 − 〈ui ,ni 〉2
) ≤ 0. (45)

Recall that x1 ≥ 0 and x1 = 0 if and only if ni = nj =
nl for all i, j ∈ Vf . Furthermore, since the undesired equilibrium sets
in (33) are proved to be unstable in [12], then by LaSalle’s invari-
ance principal, the unforced system, ẋ1 = f1 (x1 , 0), is asymptotically
stable. For the forced system, ẋ1 = f1 (x1 , x2 ), we first prove the fol-
lowing lemma.

Lemma 4.4:

∣
∣〈ni ,

(
I − nlnT

l

)
N〉∣∣ ≤ (θN (2 − θN ))

1
2 . (46)

Proof: Using the Cauchy–Schwartz inequality: |〈ni , (I − nlnT
l )

N〉| ≤ ‖(I − nlnT
l )N‖= 〈(I − nlnT

l )N, (I − nlnT
l )N〉 1

2 = (1 +
〈N,nl 〉2 − 2〈N,nl 〉2 ) 1

2 = (1 − 〈N,nl 〉2 ) 1
2 = (θN (2 − θN ))

1
2 . �

Hence, for the forced system, ẋ1 = f1 (x1 , x2 )

V̇ ≤ x1

[

− kf

∑

i∈Ṽf

(||ûi ||2 − 〈ûi ,ni 〉2
)

− kf

∑

(i , l)∈Ef l

(||ui ||2 − 〈ui ,ni 〉2
)

+ kl ||∇f (rc )||
∑

(i , l)∈Ef l

(θN (2 − θN ))
1
2

]

≤ −kf (1 − ε)x1

[
∑

i∈Ṽf

(||ûi ||2 − 〈ûi ,ni 〉2
)

+
∑

(i , l)∈Ef l

(||ui ||2 − 〈ui ,ni 〉2
)
]

, ∀

− kf ε

[
∑

i∈Ṽf

(||ûi ||2 − 〈ûi ,ni 〉2
)

+
∑

(i , l)∈Ef l

(||ui ||2 − 〈ui ,ni 〉2
)
]

+ kl ||∇f (rc )||
∑

(i , l)∈Ef l

(θN (2 − θN ))
1
2 ≤ 0. (47)

What remains is to find a sufficient function ρ(|x2 |) such that the
above-mentioned condition is satisfied whenever |x1 | ≥ ρ(|x2 |). Note
that although x1 , x2 ≥ 0 by design, we use the absolute function to
agree with the standard input-to-state stability (ISS) analysis. Let
α1 (|x1 |) = α2 (|x1 |) = 1

2 x2
1 be classK∞ functions. After several steps

of simplification and rearrangements that are omitted for space limita-
tion, we can verify that

α1 (|x1 |) ≤ V (x1 ) ≤ α2 (|x1 |)
V̇ ≤ −W (x1 ), ∀ |x1 | ≥ ρ(|x2 |) (48)

Fig. 4. Simulation of swarms of 6 and 20 agents.

where W (x1 ) = W (|x1 |) is a class K function defined by

W (|x1 |) = kf (1 − ε)|x1 |
[

∑

i∈Vf , l /∈Ni

(||ûi ||2 − 〈ûi ,ni 〉2
)

+
∑

(i , l)∈Ef l

(||ui ||2 − 〈ui ,ni 〉2 )
]

(49)

and ρ(|x2 |) is a class K function defined by

ρ(|x2 |) =
kl ||∇f (rc )||

kf ε
|Ef l |

√
|x2 |(2 − |x2 |). (50)

Therefore, according to [24, Th. 4.19], the forced system h(t, θ, δ) is
input-to-state stable. Note that, since x2 → 0 as nl → −N, ρ(|x2 |) →
0. This implies that f1 system is asymptotically stable. Additionally,
since the f2 system is proved in Theorem 4.1 to be input-to-state stable
with respect to δ, then according to [13, Th. 3], the overall system is
input-to-state stable. �

This implies that the SUSD directions of agents {4, . . . , M} asymp-
totically converge to that of agents {1, 2, 3}, which in turn converge
to the negative direction of the gradient. Since the source is located
at the minimum of the field, then Theorem 4.2 implies that all agents
converge to the source location.

V. SIMULATION RESULTS

The SUSD source seeking strategy is simulated for two swarms of 6
and 20 agents as shown in Fig. 4. The field is represented by: f (ri ) =
0.5 ∗ (x2

i + y2
i + z2

i ), which is minimum at the origin, as indicated
by a star. The circular red discs represent agents in the set {1, 2, 3},
while the circular blue discs represent agents in the set {4, . . . , M}.
The colors of the discs change from dark to light mapping the intensity
of the field. The arrows attached to each agent represent the SUSD
direction of each agent, while the magenta dotted lines represent the
edges of the graph. We use k1 = 1.1 for i ∈ {1, 2, 3} and k1 = 1 for
i ∈ {4, . . . , M}, while k2 = 0 for all agents. The separation distances
in (4) and (5) are selected to be a0

31 = −a0
23 = 0.25 and a0

31 = −a0
32 =√

2
4 . The separation distance for wi,j in (10) is selected to be

√
0.7. The

consensus gain of (7) is chosen to be kf = 8, which we made it large to
balance with the high SUSD speeds especially when the swarm is away
from the source. As shown by the swarm trajectories in Fig. 4, given
the initial random SUSD directions, the strategy successfully steers the
swarm toward the source in a relatively short time.

VI. CONCLUSION

In this paper, we presented the SUSD strategy for source seeking
in a 3-D space. We showed that through a mechanism of synchroniz-
ing direction of motion while varying the speed of each agent based
only on the measured field value, the strategy successfully steers the
swarm toward the minimum of the field. Future work may focus on the
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robustness of the proposed strategy against noisy field measurements.
Additionally, considering a moving source will be an interesting prob-
lem where in this case the swarm not only has to locate the source but
in addition to track it.
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